7,951 research outputs found

    Probing gauge-phobic heavy Higgs bosons at high energy hadron colliders

    Get PDF
    We study the probe of the gauge-phobic (or nearly gauge-phobic) heavy Higgs bosons (GPHB) at high energy hadron colliders including the 14 TeV LHC and the 50 TeV Super Proton-Proton Collider (SppC). We take the process pp→ttˉttˉpp\to t\bar t t\bar t, and study it at the hadron level including simulating the jet formation and top quark tagging (with jet substructure). We show that, for a GPHB with MH<800M^{}_H<800 GeV, MHM^{}_H can be determined by adjusting the value of MHM^{}_H in the theoretical pT(b1)p^{}_T(b_1) distribution to fit the observed pT(b1)p^{}_T(b_1) distribution, and the resonance peak can be seen at the SppC for MHM^{}_H=800 GeV and 1 TeV.Comment: 6 pages, with 7 eps files for 7 figure

    Open vs Closed Access Femtocells in the Uplink

    Full text link
    Femtocells are assuming an increasingly important role in the coverage and capacity of cellular networks. In contrast to existing cellular systems, femtocells are end-user deployed and controlled, randomly located, and rely on third party backhaul (e.g. DSL or cable modem). Femtocells can be configured to be either open access or closed access. Open access allows an arbitrary nearby cellular user to use the femtocell, whereas closed access restricts the use of the femtocell to users explicitly approved by the owner. Seemingly, the network operator would prefer an open access deployment since this provides an inexpensive way to expand their network capabilities, whereas the femtocell owner would prefer closed access, in order to keep the femtocell's capacity and backhaul to himself. We show mathematically and through simulations that the reality is more complicated for both parties, and that the best approach depends heavily on whether the multiple access scheme is orthogonal (TDMA or OFDMA, per subband) or non-orthogonal (CDMA). In a TDMA/OFDMA network, closed-access is typically preferable at high user densities, whereas in CDMA, open access can provide gains of more than 200% for the home user by reducing the near-far problem experienced by the femtocell. The results of this paper suggest that the interests of the femtocell owner and the network operator are more compatible than typically believed, and that CDMA femtocells should be configured for open access whereas OFDMA or TDMA femtocells should adapt to the cellular user density.Comment: 21 pages, 8 figures, 2 tables, submitted to IEEE Trans. on Wireless Communication

    Novel Non-equilibrium Phase Transition Caused by Non-linear Hadronic-quark Phase Structure

    Get PDF
    We consider how the occurrence of first-order phase transitions in non-constant pressure differs from those at constant pressure. The former has shown the non-linear phase structure of mixed matter, which implies a particle number dependence of the binding energies of the two species. If the mixed matter is mixed hadron-quark phase, nucleon outgoing from hadronic phase and ingoing to quark phase probably reduces the system to a non-equilibrium state, in other words, there exists the imbalance of the two phases when deconfinement takes place. This novel non-equilibrium process is very analogous to the nuclear reactions that nuclei emit neutrons and absorb them under appropriate conditions. We present self-consistent thermodynamics in description for the processes and identify the microphysics responsible for the processes. The microphysics is an inevitable consequence of non-linear phase structure instead of the effect of an additional dissipation force. When applying our findings to the neutron star containing mixed hadron-quark matter, it is found that the newly discovered energy release might strongly change the thermal evolution behavior of the star.Comment: 18pages,3figures;to be accepted for publication in Physics Letters

    Fundamentals of Inter-cell Overhead Signaling in Heterogeneous Cellular Networks

    Full text link
    Heterogeneous base stations (e.g. picocells, microcells, femtocells and distributed antennas) will become increasingly essential for cellular network capacity and coverage. Up until now, little basic research has been done on the fundamentals of managing so much infrastructure -- much of it unplanned -- together with the carefully planned macro-cellular network. Inter-cell coordination is in principle an effective way of ensuring different infrastructure components behave in a way that increases, rather than decreases, the key quality of service (QoS) metrics. The success of such coordination depends heavily on how the overhead is shared, and the rate and delay of the overhead sharing. We develop a novel framework to quantify overhead signaling for inter-cell coordination, which is usually ignored in traditional 1-tier networks, and assumes even more importance in multi-tier heterogeneous cellular networks (HCNs). We derive the overhead quality contour for general K-tier HCNs -- the achievable set of overhead packet rate, size, delay and outage probability -- in closed-form expressions or computable integrals under general assumptions on overhead arrivals and different overhead signaling methods (backhaul and/or wireless). The overhead quality contour is further simplified for two widely used models of overhead arrivals: Poisson and deterministic arrival process. This framework can be used in the design and evaluation of any inter-cell coordination scheme. It also provides design insights on backhaul and wireless overhead channels to handle specific overhead signaling requirements.Comment: 21 pages, 9 figure

    Open, Closed, and Shared Access Femtocells in the Downlink

    Full text link
    A fundamental choice in femtocell deployments is the set of users which are allowed to access each femtocell. Closed access restricts the set to specifically registered users, while open access allows any mobile subscriber to use any femtocell. Which one is preferable depends strongly on the distance between the macrocell base station (MBS) and femtocell. The main results of the paper are lemmas which provide expressions for the SINR distribution for various zones within a cell as a function of this MBS-femto distance. The average sum throughput (or any other SINR-based metric) of home users and cellular users under open and closed access can be readily determined from these expressions. We show that unlike in the uplink, the interests of home and cellular users are in conflict, with home users preferring closed access and cellular users preferring open access. The conflict is most pronounced for femtocells near the cell edge, when there are many cellular users and fewer femtocells. To mitigate this conflict, we propose a middle way which we term shared access in which femtocells allocate an adjustable number of time-slots between home and cellular users such that a specified minimum rate for each can be achieved. The optimal such sharing fraction is derived. Analysis shows that shared access achieves at least the overall throughput of open access while also satisfying rate requirements, while closed access fails for cellular users and open access fails for the home user.Comment: 26 pages, 8 figures, Submitted to IEEE Transactions on Wireless Communication
    • …
    corecore